师资队伍

导师队伍

首页 >> 师资队伍 >> 导师队伍 >> 正文

商锦赛

发布日期:2023-03-17    作者:     来源:    点击:



个人概况

姓名:商锦赛 性别:男

职称:研究员 导师资格:博士生导师

单位:广州实验室 / 广州医科大学(双聘)

学历:博士研究生 毕业院校:美国南伊利诺伊大学

招生专业 病理学与病理生理学

电子邮件 shang_jinsai@gzlab.ac.cn

通信地址 广州市海珠区生物岛星际四路标四B10005


导师介绍

商锦赛,广州实验室研究员,高层次青年人才项目入选者。2006年于武汉大学化学专业获学士学位,2015年于美国南伊利诺伊大学获得生物化学博士学位,2015-2020于美国斯克利普斯研究所从事博士后研究。课题组围绕靶向抗感染与抗肿瘤药物的分子作用机制开展研究,利用药物化学、蛋白质核磁与晶体学等方法研究药物小分子对靶点受体的结构与相关功能的影响并应用于基于结构的药物研发。主持国家自然科学基金面上项1项、承担省部级项目2项,代表性研究成果以第一作者或共同作者身份在Nature2021)、Nature Communications20202018)、PNAS2019)、eLife2018)、J. Med. Chem2016)等国际期刊发表SCI论文22篇,申请国家专利2项(已授权1项)。


研究方向

  • 靶向抗病毒与抗肿瘤等新药小分子开发与作用机制

  • 药物靶标激素核受体(NRs)G蛋白偶联受体(GPCRs)的结构与功能

  • 基于抗病毒与肿瘤药物靶点的活性化合物探究与高通量药物筛选(HTS


课题组围绕靶向抗感染与抗肿瘤药物的分子作用机制开展研究,利用药物化学、蛋白质核磁与晶体学等方法研究药物小分子对靶点受体的结构与相关功能的影响并应用于基于结构的药物研发。研究成果较为系统地阐明了配体诱导的核受体PPARγ转录抑制与激活的分子调控机制,为相关疾病的基于结构的靶向药物开发(SBDD / CADD)提供了分子机制基础。近期发表SCI论文22篇,累计影响因子 > 247,代表性研究成果以第一作者或共同作者身份在Nature2021)、Nature Communications20202018)、PNAS2019)、eLife2018)、J. Med. Chem2016)等国际期刊发表SCI论文22篇,申请国家专利2项(已授权1项)。


所获荣誉

1. 2022年入选高层次青年人才项目


主持科研项目

1. 国家自然科学基金面上项目:FABP3介导溶血磷脂酸激活PPARγ及其影响动脉粥样硬化发生的分子调控机制研究,项目编号:8217047355万元,项目负责人(排名1),在研。

2. 广东省重点领域研发计划-新药创制平台项目:抗冠状病毒药物研发以及高通量药物筛选平台建设,项目编号:2021QN0204512886.93万元,项目承担人(排名1),在研。

3. 广东省项目:精准医学:创新生物靶点发现,项目编号:2021QN02045150万元,项目负责人(排名1),在研。


部分代表性研究论文

1. Shang J, Kojetin DJ. (2021). Structural Mechanism Underlying Ligand Binding and Activation of PPARγ. Cell: Structure, 29(9), 940-950.

2. Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, et al, Moore DD, Sundrud MS. (2021). CAR directs T cell adaptation to bile acids in the small intestine. Nature. 593(7857), 147–151.

3. Mosure SA, Strutzenberg TS, Shang J, Munoz-Tello P, Solt LA, Griffin PR, Kojetin DJ. (2021) Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ. Science Advances. 7(5): eabc6479.

4. Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR and Kojetin DJ. (2020). A Molecular Switch Regulating Transcriptional Repression and Activation of PPARγ. Nature Communications, 11(1), 956.

5. Shang J, Brust R, Griffin PR, Kamenecka TM and Kojetin DJ. (2019). Quantitative Structural Assessment of Graded Receptor Agonism. (PNAS) Proceedings of the National Academy of Sciences, 116 (44) 22179-22188

6. Mosure S, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S and Kojetin DJ. (2019). Structural basis of altered potency and efficacy displayed by a major in vivo metabolite of the anti-diabetic PPARγ drug pioglitazone. J. Med. Chem., 62(4), 2008-2023.

7. de Vera IM, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, et al., Kojetin DJ. (2019). Defining a canonical ligand-binding pocket in the orphan nuclear receptor Nurr1. Cell: Structure, 27(1), 66-77

8. Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM and Kojetin DJ. (2018). Cooperative Cobinding of Synthetic and Natural Ligands to the Nuclear Receptor PPARγ. eLife, 7, e43320.

9. Brust R, Shang J, Fuhrmann J, Mosure SA, Bass J, et al., Hughes TS and Kojetin DJ. (2018). A structural mechanism for directing corepressor-selective inverse agonism of PPARγ. Nature Communications, 9(1), 4687.

10. Chrisman IM, Nemetchek MD#, De Vera IM#, Shang J#, Heidari Z, et al., Kojetin DJ and Hughes TS. (2018). Defining a conformational ensemble that directs activation of PPARγ. Nature Communications, 9(1), 1794.

11. Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, et al., Kojetin DJ, Kamenecka TM and Solt LA. (2018). REV-ERBα Regulates TH17 Cell Development and Autoimmunity." Cell Reports, 25(13), 3733-3749.

12. Zheng J, Corzo C, Chang MR, Shang J, Lam VQ, et al., Kojetin DJ and Griffin PR. (2018). Chemical crosslinking mass spectrometry reveals the conformational landscape of the activation helix of PPARγ; a model for ligand-dependent antagonism. Cell: Structure, 26(11), 1431-1439.

13. de Vera IMS, Zheng J, Novick S, Shang J, Hughes TS, et al., Griffin PR and Kojetin DJ. (2017). Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. Cell: Structure 25(10), 1506-1518.

14. Hughes TS#, Shang J#, Brust R, de Vera IMS, Fuhrmann J, Ruiz C, Cameron MD, Kamenecka TM and Kojetin DJ. (2016). Probing the complex binding modes of the PPARγ partial agonist (T2384) to orthosteric and allosteric sites with NMR spectroscopy. J. Med. Chem., 59(22), 10335-10341.

15. de Vera IM, Giri PK, Munoz-Tello P, Brust R, Fuhrmann J, Matta-Camacho E, Shang J, et al., Solt LA and Kojetin DJ. (2016). Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chemical Biology, 11(7), 1795-1799

16. Shang J, Huang X and Du Z. (2015). The FP domains of PI31 and Fbxo7 have the same protein fold but very different modes of protein-protein interaction. Journal of Biomolecular Structure & Dynamics. 33(7), 1528-1538.

17. Shang J, Wang G, Yang Y, Huang X and Du Z. (2014). Structure of the FP domain of Fbxo7 reveals a novel mode of protein–protein interaction. Acta Crystallographica Section D: Biological Crystallography, 70(1), 155-164.

18. Shang J, Wang G, Yang Y, Huang X and Du Z. (2013). Expression, purification and crystallization of the FP domain of the human F-box protein Fbxo7. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 69(10), 1097-1099

19. Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. (2012). Fe-catalysed oxidative C–H functionalization /C–S bond formation. Chemical Communications, 48(1), 76–78